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“MATHEMATICS for EVERYONE” (Summary) 
Author: Laurie Buxton (1984).   
 
Trying to make math cool is like trying to make "not holding your breath for five minutes" cool.  The goal of 
this summary is not to make math ‘cool’, but to present the fundamentals in a commonsense way with 
real world examples and applications (with a dash of ‘cool’ graphics). 
 
I – STARTING OUT 
CH1 – Back to Basics 
Curiosities 
If we add up a string of odd numbers, starting with 1, we always get a square (the square of an integer). 
1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 
 
Primes 
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.  
Primes:  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97… 
 
Fundamental Theorem of Arithmetic 
Any integer greater than 1 either is a prime number itself or can be represented as the product of prime 
numbers. 
2 x 2 = 4  |  2 x 3 = 6  |  2 x 2 x 2 = 8  |  3 x 3 = 9  |  2 x 5 = 10 |  2 x 2 x 3 = 12 |  2 x 7 = 14 …. 

 
A very good approximation for the number of 
primes up to any number x is shown by the 
Prime Number Theorem (from 2 to x).  Works 
best for large numbers. (ln(x) = loge(x)). 
 
Not to shock the reader right off the start with visually intimating math, but there is something weird about 
an expression from the calculus being linked with primes (we’ll get to infinite series and calculus later). 
 
Numeracy 

Percentages are often a source of public misunderstandings and a means for those who wish 
to persuade the public of things for their own commercial or political things. 
% = baseline of 100. 

 
Scientists write numbers as if they were all ‘ground floor’ numbers between 1 & 10 
and then indicate which floor we need to take the lift to.  93,000,000 = 9.3 x 107.    
“Floors” = orders of magnitude. 
 
Another important skill:  to estimate rather than calculate. 
 
 
 
 

Continuous versus Discrete Math 
Continuous mathematics is math based on real 
numbers that have the property of varying 
"smoothly". In continuous math, you can always 
find a number between two other numbers; in fact, 
you can always find an infinite set of numbers 

between them. In discrete mathematics, objects, like integers, graphs or statements in logic, have distinct 
values.  Discrete mathematics excludes topics in "continuous mathematics" such as calculus and 
analysis. 
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CH2 – SOME PRACTICALITIES 
Money Matters 

Issue:  how much trouble are you prepared to go to get a good deal?  Time is money. 
Car buying:  depreciation and loss on capital may matter more than the cost of gasoline. 
 
Many people believe that a numerical understanding removes freedom of choice.  This 
is nonsense.  Numbers will tell you what things cost, not what you should do.  “Who 
shall be master”? as Humpty Dumpty remarked. 
 
 

The Greeks made a distinction between ‘arithmetica’ – the study of whole numbers and their relationships 
– and ‘logistica’ – the calculation used by tradesmen and the lower class. 
 
Health 

There is nothing personal about statistics, but they have their role.  Doctors plus computer-
based help using statistical trends do better than doctors without. A real triumph of statistics 
lay in the establishment of the link between smoking and lung cancer.  Issue: statistics do not 
offer proof, statistics offer probability.   
 

Graphs and the Media 
If a good proportion of the population does not comprehend, attempts to explain will fail.  TV, radio and 
the press have points of view to express (and sales expectations) and will tailor the information to support 
their views. 
 

 
 
Graph tricks: 1) how steep the line appears depends simply on the scale used on the x-axis, 2) difference 
in bar heights based on the scale used on the y-axis, 3) incomplete picture. 
How to mislead:  what scales you use and where you put the zeros. 

1. Do a quick math estimate and apply common sense 
2. Check the authority of the source. 
3. Question if the statistics are biased or statistically insignificant. 
4. Question if the statistics are skewed purposely or misinterpreted. 
5. Fully utilize your resources to conduct more research. 

 
The left side of the brain is normally dominate and controls language, numerical work and most analytic 
thinking; the right gives us our spatial perceptions and may be a larger factor in creativity and problem-
solving.   
 
Sports 

For cricket or baseball, performances are expressed in ‘averages’ calculated to at 
least two decimal places (the ‘dammed dots’). 
Chess: Elo rating for grand masters and ordinary players.   
 

Trigonometry:  how steep is a hill? 
Trigonometry is about ratios in triangles (‘triangle’ measurement). Once we 
attach a number to a notion, such as steepness, we have a measure. 
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CH3 – THE STORY OF CALCULATION 
Numerals  

Babylonian’s system of numeration:  counting in sixties (60) remain in our measurement of 
time – 60 seconds per minute, 60 minutes per hour.  Also, to divide a circle into 360 degrees.   
They used cuneiform (wedge-shape) symbols to represent numbers. 
 

 
The Roman numeral system is basically a tens (10) system, but the symbols were not useful for 
basic arithmetic and definitely not useful for precision engineering. 
 

 
The Hindi-Arabic system added the most important improvement: the symbol for zero. 
 
 

In the medieval days, to be a ‘scholar’ meant to be able to read, write and figure.  Early Liberal Arts 
studies began with ‘Tridium’ instruction; later on ‘Quadrium’ instruction was added.  Note the dominate 
theme of numbers. 

Tridium Instruction Quadrium Instruction 
Grammar Arithmetic (numbers) 
Logic  Geometry (numbers in space) 
Rhetoric Music (numbers in time) 

- Astronomy (numbers in space-time) 
 
Napier was a 17th century Scottish mathematician who devised a system of rods 
to facility multiplication. 
 
Logarithms 
Logarithms are an obsolete method of computation:  multiplication was reduced 
to addition.  The exponents were added and the total was located in a table to 
find the answer.  The affordable electronic calculator, PC & smartphone killed the 
logarithm. 
83 x 236 = 101.9191 x 102.3729 = 10(1.9191 + 2.3729) = 104.1020 = 19,588 
 

Math and the Computer 
Tedious, repetitious work can be done with great rapidity, to any desired degree of 
accuracy, with a calculator or computer.  By good guesswork and getting a result 
somewhere near the answer, we can derive a technique for getting a closer result.  
The process is repeated to get closer results.   
 

Computers are very useful in solving complex equations where it is impossible or very difficult to solve by 
explicit algebraic formulas (eg, equations with powers of 5 or greater).  A classic programming workhorse 
is iteration (a repeated routine).   Another important use for the computer is infinite series calculations:  1 
+ ½ + 1/3 + ¼ + 1/5 + ….. (infinite series will be discussed further in Chapter 7). 
 
Formula vs. Equation 

A formula is a like a tool.  It links one quantity to one or more other quantities. An 
example of formula is the area of circle:  A =  x r2 
An equation is like a puzzle.  It is an equality containing one or more variables. 
Solving an equation consists of determining which values of the variables make 
the equality true.  An analogy is a balance scale as shown in the left-side diagram 
– the goal of the equation is to ‘balance’ out the puzzle. 
In algebra there are two main families of equations:  
 1) Linear (y = mx + b). 
 2) Polynomial (quadratic: y = ax2 + bx + c) 
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II – THE CENTRAL CORE 
CH5 – NUMBER 
A clear understanding of the definitions and the nature of numbers is the magic key to understanding 
mathematics. 
 
The Great Math Mystery 
“How can it be that mathematics, a creation of the human mind independent of existence, should be so 
adapted to the objects of reality?”  –  Albert Einstein 
 
Taking a philosophical turn on speculating on how numbers came to be, two camps are presented: 
1) ‘Math is Discovered’, 2) ‘Math is Invented’: 
 
1) Math Discovered.  Natural numbers or the counting numbers basically started with the number 2.  
Within humans there is a strong symmetry in nature – two eyes, two hands, two legs, etc. So, the number 
2 was more discovered than invented. This is the Platonic school of thought, dating back to Plato, where 
number is considered to be fundamental objective knowledge. It is the notion that numbers (and 
mathematical forms) underpin the physical universe and are out there waiting to be discovered (rather 
than invented).  For mathematicians, in general, math is discovered. 
 
2) Math Invented. The idea is that number, beyond natural numbers, is an invented concept.  Numbers 
(and mathematical forms) are objects of our human imagination and we make them up as we go along 
(eg, complex numbers), tailoring them to describe reality.  Welcome to the world of abstraction.  
Philosophers label this perspective the ‘Non-Platonists’ view.  In general, for engineers, and for 
physicists, sometimes reluctantly, math is invented. 
 
So, is math a discovered part of the universe or a very human invention?  As we’ll see in the following 
chapters, people learned that the natural numbers have all kinds of intricate relationships – those were 
the discoveries.  Humans invented the concept, but later discovered the relations among the different 
concepts.  In the end, taking the rational approach, number is both – discovery and invention. 
 
1. Natural Number 
Natural numbers are the positive counting numbers: 1, 2, 3, 4…  If we add zero, then they’re called the 
whole natural numbers. 
 
2. Integer 

With integers we have to look at the ‘other side’ of the number line 
– the negative numbers.  Integers are positive and negative whole 
natural numbers. 
 

Negative Number 
The Greek mathematician Diophantus (3rd-century BC) came across -4 as the solution of an equation and 
rejected it as absurd.  This attitude persisted, even among well-known mathematicians, as late as the 
middle of the 16th-century, when the Renaissance Italian polymath, Cardano recognized, “minus times 
minus give plus”, but still regarded negative numbers as ‘fictitious’. 
 

To illustrate, we can start with the flight equation of a tossed stone: y = 6 + x – x2 (it starts off 6 
feet up).  The roots are +3 and -2.   The -2 answer does not fit the real-world situation, but it is 
still good mathematics.    The logic is irrefutable, but the result is emotionally unacceptable.  
Mathematics does not need to be justified by a real-world situation. 
Time always has a direction:  Future is (+) and the past is (-).  A depreciation in finance is a 
‘negative appreciation’. Double negative in language: “There is no way I am not going to be 
there”. 
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3. Fraction 
The social obligation to share things, like food, most likely was one of the 
key drives for humans to create fractions.  The language of halves, quarters, 
thirds, etc. 
It has been recognized that children who grew up with digital clocks (eg, 
smart phone) have more difficulty understanding fractions than with children 
who grew up with analog clocks (eg, saying “quarter to 6”, “half past 3”). 

 
Fractions can be broken into two categories: 
1) Rational Number.  A rational number is a number that can be expressed as the fraction A/B of two 
integers, a numerator A and a denominator B (B can’t be zero). Since B may be equal to 1, every integer 
is a rational number (7=7/1).  A rational fraction can also be written without using explicit numerators or 
denominators, by using decimals or percent signs  (as in 0.01, 1/100, or 1%).  The word ‘rational’ gets its 
name from the Latin ratio. 
 
2) Irrational Number. An irrational number is a number that cannot be expressed as a ratio of integers (a 
fraction). When written as a decimal number, irrationals do not terminate or repeat.  The classic example 
is the square root of 2 (2=1.41421356237…) which shook the Pythagoreans to the roots of their beliefs. 
 
4. Algebraic Number 

For the Pythagoreans (6th-century BC), the natural number was at the center of the 
universe - it was at an emotional, mystical and religious level.  Their attitude was that 
natural numbers had a ‘sacred’ truth since everything was derived from natural 
numbers. Their belief (ideology?) became a priesthood and the ‘truth’ had to be 
guarded.  The Pythagoreans accepted fractions, for every fraction was a ratio of two 

natural numbers.  The Pythagorean theorem states that sides of every right triangle satisfies the formula 
a2 + b2 = b2. Everything was fine until someone looked at the diagonal of a square with side length of 1.  
The Pythagorean Theorem says that the diagonal length is 2 – illogical. 

 
The discovery that shattered the Pythagoreans was that 2 was not a fraction of natural 
numbers – this was a matter serious beyond belief. The whole school of Pythagoras was 
sworn to secrecy concerning this dreaded fact.  Around 5th-century B.C., Hippasus of 

Metapontum, a Pythagorean, discovered irrational numbers. According to Greek legend, shocked 
Pythagoreans had Hippasus drowned at sea for the punishment of 'upsetting' the gods.  
Since 2 cannot ‘go’ into fractions, algebraic numbers were invented (discussed further in CH7, pg. 18). 
Note: In the generalized form of Pythagorean’s theorem (an + bn = cn), Fermat's Last Theorem (1637) 
states that there are no three positive integers a, b and c that satisfies the equation for any integer value 
of n greater than 2. After 358 years of effort by mathematicians, the first successful proof was published 
in 1995 by Andrew Wiles. 
 
5. Imaginary Number 

In the ‘Negative Number’ discussion (pg. 4), it was shown that the answer, the ‘roots’, of the 
stone flight equation had two answers, one positive and one negative.  A negative number 
doesn’t make practical sense in the real world, but its ‘good mathematics’.  The same goes for 

taking the square root of a negative number.  It applies to ‘worlds’ we can’t see with the eye.  Imaginary 
numbers are essential for the understanding of electronics, AC power and the atom. A deeper example is 
the application of imaginary numbers to the space-time continuum within cosmological research (a la 
Steven Hawking).  Big “Woo-Woo” sweepstakes winner, there. 
 

Since -1 cannot be expressed by algebraic equations, ‘imaginary’ numbers were 
invented (the ‘non-Platonists’ point-of-view, pg. 4). Imaginary numbers are represented 
with the letter i which equals -1.  
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The equation x2 + 1 = 0 does not have roots (the graph does not cross the x-axis). By letting -1 = i solves 
i2 = -1. Creating an ‘imaginary’ number (i) is intellectually compelling, but an emotionally unacceptable 
approach; a geometrical analogy, and even a social one, would be helpful. 
 
6. Complex Number 

One geometric analogy to explain the complex number is the 
parallelogram.  Parallelograms fit exactly the way that certain physical 
things add up, like forces (known as ‘vector math’).  The points of the 
parallelogram are represented by a number with two parts: a ‘real’ part 
(x-axis) and an ‘imaginary’ part (y-axis).  The graph to the left shows a 
parallelogram represented by the complex numbers: (4+2i) + (2+3i) = 
(6+5i) 
 
In the physical sciences, forces can be interpreted using complex 
numbers. Electronic engineers could not operate circuit theory without 
-1 or i.   

 
For a ‘social’ analogy, complex numbers can 
be related to walking commands. 
A = Go-Ahead = +1 U = U-Turn = -1 
L = Left-Turn = i    R = Right-Turn = -I  
The ‘truth tables’ to the left show how 
walking commands relate to complex 
numbers. 
 

7. Transcendental Number 
In primitive times the ratio of a circle’s circumference to its diameter (C/D) was taken as 3, 
which was good enough.  A simple close fraction is 22/7 (3.14).  The Chinese used 355/113 

– accurate to 5 digits (3.14159).  Since the mid-18th century, the Greek letter  has been 
used to represent the mathematical constant of the circle’s C/D ratio – a number that is 

infinitely long:  3.141592653589793238462643383279502884197169399375105820974944592307… 
Contemplating pi’s infinite nature, the mathematician can envision the ‘purity’ of the circle (also another 

defense on the ‘discovery’ of number, pg. 4).  On the other hand, the practical engineer sees  as a 
useful mental construct but knows there’s no such thing as a perfect circle in the known physical 
universe.  In 1882, the mathematician Lindeman proved that  was one of a new class of numbers – 
‘transcendentals’ – a number that cannot come from an algebraic equation.  Another transcendental 
constant is e, the base of the natural logarithm, named after the Swiss mathematician Leonhard Euler 
(CH7, pg. 25).  
 
Squaring the Circle 

 
Algebraic numbers come as the solutions of equations with whole number 

coefficients, but  cannot be determined that way.  The Greeks successfully drew 
squares equal in area to any triangle, but with a circle the problem proved 
intractable – known as ‘Squaring the Circle’.  The difficulty was using only a 
compass and protractor to make area of a square equal to the area of a circle. 
 

The Magical & Mysterious  
Pi is found in many areas where it’s relation to the circle is not self-evident.  Some say that pi isn’t a 
number, but a “startup constant of spacetime”.  That the existence of space has a numerical signature – 
called a transcendental number. 

1) Probability & .  In the 18th century, French philosopher Georges-Louis 

Leclerc, Comte de Buffon determined that you could approximate  by 
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 dropping needles on a grid of parallel lines (spacing is greater than the length of a needle) and 

calculating the probability that they will cross a line. The probability is directly related to  (search 
‘Buffon’s Needle’ for the detailed proof). 
 

2) River & .  In a paper titled “River Meandering as a Self-Organization 
Process” (1996), Hans-Henrik Stølum studied the chaotic behavior of a 
river’s form over time.  The value of a river’s ‘sinuosity’ – the ratio of the 
actual length and the direct length as the crow flies - tended to oscillate 
between a low-value of 2.7 and a high-value of 3.5, but with an average 
sinuosity of 3.14.  Stølum justified the result using fractal geometry. 

 

3) Normal Distribution & . 

 

Normal distributions are important in statistics and are often used in the natural and social sciences to 
represent real-valued random variables whose distributions are not known (eg, height & weights of men 
and women). Pi shows up in the normal distribution since the integral of the Probability Density Function 
(PDF) must sum to one. Pi is the factor that makes the area under the curve equal to one (relates to a 
circle with area of 1) . For a visual explanation the projection of a 3D PDF distribution on to a 2D surface 
will yeild concentric circles (the 'shadow' of the distribution). 

Other transecendental numbers are trigometic functions (CH7, pg. 24) and the natural exponential 
function (CH8, pg. 28). 

The Most Beautiful Equation in the World 

For reasons that seem mysterious, let x = i.  With some ‘pencil whipping’, ei has a very special result. 

For some mathematicians, the linking of e, , i, 1 and 0 in this manner is a truly moving 
experience (‘mystical’ to some).  Mathematical solutions to real life problems come out in 

terms of the exponential function ex (CH8, pg. 26). 
 

The electrical engineer demystifies the above ‘mystery’ equation as ei = -1.  In this form, it merely states 

that a rotation by  radians (180 degrees) is simply a reflection or multiplication by -1. 
 
8. Real Number 

In concluding the discussion on ‘Numbers', real 
numbers comprise all the previous numbers: 
 
Notice that the Transcendental set is outside the 
main set – that’s because transcendental numbers 
cannot be the roots of an algebraic equation. 
 
 
 

 

  

eI + 1 = 0 
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CH6 – GEOMETRY 
Geometry literally means ‘earth measuring’.  The builders of ancient Egypt, 
thousands of years before Pythagoras, knew that if they used a knotted rope, with 
12 equal gaps between the knots, then when the rope was formed into a 3-4-5 
triangle there was a right angle opposite the largest side.  It was Pythagoras who 
later figured out the square relationship:  32 + 42 = 52.  The term ‘square’ (and 
even ‘cubed’) is not just a mathematical term – it comes from our description of a 

four-sided object with equal sides – the square.   
 
The Pythagorean Theorem can be understood visually using the ‘Unity Square’ and four ‘3-4-5’ 
Pythagorean triangles.  You first start with a square of area of 25 (52).  The goal is to rearrange the 
triangles so that we get two squares - one with and area of 9 (32) and the other with an area of 16 (42).  
The areas of  and  are the same – a visual proof of the Pythagorean Theorem. 
 

 
 

 
 
Euclidean Geometry 
Classic geometry focused on compass and straightedge constructions. Geometry was revolutionized by 
Euclid (~300BCE) – the ‘father of geometry’ - who introduced mathematical rigor and the axiomatic 
method still in use today. Euclid’s highly influential 'Elements' consists of 13 books - a collection of 
definitions, postulates (axioms) and proofs of propositions. 
 
Before geometry was even thought of, man stretched ropes on the ground and made triangles.  The 
Greeks abstracted the ‘rope triangles’ and built an ideal geometrical world with a thing called a straight 
line in that was “the shortest distance between two points”.   
 
Euclid’s 5th Postulate 

The ‘Parallel Postulate’. "If a straight line falling on two straight lines 
make the interior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on that side on 
which are the angles less than the two right angles.  
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Triangle Angle Sum Theorem 
The sum of the three angles of any triangle will always equal 180 
degrees. 
 
 
 
 

 
 
Cartesian Coordinate System 

Rene Descartes (1596-1650) developed ‘Cartesian’ or analytic geometry, which 
uses algebra to describe geometry.  The Cartesian Coordinate System (CCS) 
enables a geometric shape or curve to be described by using an equation rather 
than an elaborate geometrical construction. This enabled a formal distinction 
between curves that can be defined using algebraic equations, algebraic curves, 
and those that cannot, transcendental curves. 
 
 
 

For example, a circle of radius 2, centered at the origin, is described by the equation x2 + y2 = 4.  In CCS  
space this is the number line in two dimensions, known as the Cartesian plane. In Euclidean space, the 
Cartesian x and y axis are perpendicular to each other.  If not, then non-Euclidean geometry is required. 
 
The Conic Sections 
The Greeks used the Conic Section to generate four basic types of geometric shapes:  circles, ellipses, 
hyperbolas and parabolas. A conic section is the intersection of a plane and a double circular cone.  By 
changing the angle and location of the plane’s intersection different types of conics are produced. 

 
Closed Curves 
1) Circle:  plane slice is 90° to the cone’s axis. 

2) Ellipse (‘oval’): plane slice is tilted between 0° & 90°.   
 
Open Curves 
1) Parabola: plane slice is parallel to the edge of the cone. 
2) Hyperbola: plane slice is parallel to the cone’s axis (0°). 
 

Focus-Directrix Property 
As an alternative to Conic Sections, the Greeks discovered a formal 
method, known as the ‘focus-directrix’ property, to generate circles, 
ellipses, parabolas and hyperbolas. The figure on the left illustrates the 
process: 
1) fixed line: the directrix. 
2) fixed point: the focus (F) 
3) moving point: P 
4) Point P moves where its distance from the directrix and from the focus 
(F) stay in proportion. 
 

# of Focuses Curve Type 
  

1 Parabola (NP = NF),  Ellipse (NP = 2PF) 
2 Ellipse, Hyperbola 
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Conic Section Equations 

 
 

 

The Practical Parabola 
 Engineering Discipline Parabolic Applications 

Civil 
1) Vertical Curves for roads - parabolic cross-section makes for a smooth ride over 
the ‘hump’ (geomatics). 

Structural 
1) The curves of ‘modern’ bldg. roofs or exotic car roofs (see ‘Curve-Stitching – The 
Amazing Parabola’) 

Mechanics 1)The path that a thrown or ballistic projectile takes under the force of gravity. 

Thermal 
1) Thermal Collector (solar water heater). 
2) Torch lighting with the light of the Sun. 

Electrical 
1) Microwave Parabolic Antenna. 
2) TV Satellite Dish 

Optical 

1) Automotive Headlight. A source of light at the focus of a parabolic mirror 
produces light rays coming out parallel to the axis. 
2) Reflecting Telescope.  Developed by Sir Isaac Newton (1668) - also known as 
the "Newtonian Telescope". 
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Curve-Stitching - The Amazing Parabola 
To teach children about number relationships there is a common activity 
know as curve-stitching.  For example, the task is to determine what 
pairs of numbers add to 20:  0+20, 1+19, 2+18, etc.  For a visual 
demonstration lines can be drawn from each number pair.  The final 
result is surprising – a parabolic curve appears. 
 
A real-world example is seen in modern architecture – the shape of 
beautifully shaped roofs are often hyperbolic paraboloids.  One sectional 
view is parabolic and the other sectional view is hyperbolic. 
 
 
 

 
Cardioid – Inverse Parabola 

A cardioid is the inverse curve of a parabola with its focus at the center 
of inversion (Fractal Geometry, pg. 13). 
 
 
 
 
 
 
 
 

Curves for any xy product that is equal to a constant result in equilateral 
hyperbolas.  For example, equilateral hyperbolas are seen in Boyle’s Law where 
the product of pressure and volume is a constant (assuming constant temperature 
and constant mass). 
 
 
 

 
Celestial Mechanics 
With a vast number of observations and some monstrously heavy calculations, Kepler found three laws of 
planetary motion.  One law informed that the planets travelled in an ellipse and another law established 
the speed of their paths. 
 

Kepler’s Laws 
1. All planets move in elliptical orbits with the sun at one focus. 
2. A line joining any planet to the sun sweeps out equal areas in equal times. 
3. The square of the period of any planet about the sun is proportional to the 
cube of the planet's mean distance from the sun. 
 

Later on, Newton discovered the universal law of gravitation which asserted that celestial bodies (Earth, 
Moon, Sun, etc.) pulled on every other on with a force depending on their masses and the distances 
apart.  The end result is that planets, comets, satellites all had to travel in one of the conic sections. 
Halley’s Comet travels in a very long flat ellipse.  Other comets move through on a hyperbola and 
disappear off into space. To travel in a circle or a parabola is a very special case, if ever. typically, a 
celestial path is an ellipse or a hyperbola. 
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Non-Euclidean Geometry 
Euclidean geometry breaks down when a triangle is constructed on the face of 
the Earth – the fixed sum does not work.  For example, a triangle starting from 
the North Pole down to the Greenwich Meridian to the Equator and back to the 
North Pole.  All three angles are 90°, but total 270° – these are great circles, 

they are not straight lines. 
 
In the geometry of a sphere’s surface, a line cannot be drawn line parallel to a 
given line through a given point – non-Euclidean geometry. 
 

 
Projective theorems: 1) Desargues, 2) Pascal. 

 
 
If the ‘Euclidean’ geometrical equations were drawn on a rubber balloon, the lines become distorted as 
the balloon grows – another field of mathematics called ‘topology’. 
 
The Golden Ratio 

The golden ratio, or divine proportion, is a number often 
encountered when taking the ratios of distances in simple 
geometric figures.  It an irrational number meaning it cannot 
be written as a simple fraction. Two quantities a and b are 
said to be in the golden ratio if the ratio of (a+b)/a is equal to 
the ratio a/b. Psi, the symbol for the Golden Ratio, can be 
easily calculated using the quadratic formula. 

 
Golden Mean ratios appear everywhere in the universe.  
The spiral is the natural pattern of water flowing drown a 
drain; the flow of air in tornados and hurricanes; the spiral 
form of the Nautilus shell; the number of lines in the spirals 
of a sunflower; the spiral of a galaxy.  The Golden Mean 

ratio is also all over the human body: the ratios between bones and the length of your arms and legs; the 
ratio in the distance from the navel to your toe and the distance from your navel to the top of your head. 

 
Another fascinating example of finding the Golden 
Ratio in nature is in the spectrum of mammal body 
temperatures and the temperature at which bacteria 
is killed.  Using the temperature end points of 
freezing and boiling, the Golden Ratio appears.  
Uncanny. 
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Fractal Geometry 
“… no one, not even Benoit Mandelbrot himself…had any real preconception of the [Mandelbrot] set’s 
extraordinary richness. The Mandelbrot set was certainly no invention of any human mind. The set is just 
objectively there in the mathematics itself. If it has meaning to assign an actual existence to the 
Mandelbrot set, then that existence is not within our mind, for no one can fully comprehend the set’s 
endless variety and unlimited complication.”   Roger Penrose (The Road to Reality) 
 

Being that fractals are not typical geometric objects, understanding them 
involve algebra, calculus and infinite series (CH7, CH8).  A fractal is a 
mathematical set that exhibits a repeating pattern displayed at every scale.  
Fractals are different from other geometric figures because of the way they 
scale, sometimes described as “self-similarity’. Fractals are an expanding 
geometric symmetry where the whole of the fractal looks just like a part of the 
fractal at successive sub-levels.  Technically, self-similarity is an informal 

definition.  A formal definition of a fractal is actually quite difficult, a bit slippery and if fact there is no 
widely accepted formal definition. 
Approximate fractals found in nature that display self-similarity include: river networks, mountain ranges, 
earthquakes, craters, lighting bolts, coastlines, algae, trees, pineapples, snowflakes, crystals, ocean 
waves, heart rates, blood vessels, proteins and even the rings of Saturn. 
 
In Chapter 5, "The Great Math Mystery" (Number, pg. 4), speculated on whether math is discovered or 
invented. The Platonic school of thought says that math is discovered. Roger Penrose, a mathematical 
Platonist, believes that a fractal pattern is not a mental construct, but has its own existence on a Platonic 
plane waiting to be discovered. 
 
Mathematical ‘Monsters’ 
The story of fractals begins in the late 19th century with mathematicians attempting to create 
mathematical curves of objects found in nature – clouds, flower, plants.  The kind of formulas they came 
up with satisfied the definition of a curve, but they were not lines or circles, just very peculiar.  There were 
so weird that they were beyond what could be drawn. These unfamiliar concepts were sometimes 
referred to as mathematical ‘monsters’:  a 1-dimensional line yet having a dimension that resembles a 
surface; a continuous curve, but not differentiable (analytical functions are defined as continuous and 
infinitely differentiable) – a paradox. 
 
Koch Snowflake 
A Koch snowflake (1904) is a fractal that begins with an equilateral triangle and then replaces the middle 
third of every line segment with a pair of line segments that form an equilateral ‘bump’.  The number of 

sides is N = 3 x 4i, where i is the number of iterations.  Since the number of sides are predicable, the 
Koch Snowflake is a ‘deterministic’ fractal. 
 

 
 
The Koch snowflake (curve) is a paradox – the surface it appears to be finite, but mathematically it is 
infinite.  Theoretically, it cannot be measured.  It’s known as a ‘pathological’ curve – it conflicts with the 
rules of Euclidian space and measurement.  With infinite repetitions we get an infinite perimeter, however 
the area is not infinite – put a Koch flake inside a circle, it’s always inside.   
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Mandelbrot Set 
In the early 1960s, mathematician Benoit 
Mandelbrot used the term ‘fractal’ in papers about 
self-similarity and in studies about determining the 
length of a coast (eg, “How Long is the Coast of 
Britain?”).  Computers made it easy to do the vast 
iterations demanded by the ‘math monster’.  
Computers were essential to unlock the inner 
secrets of fractals.  In 1980, Mandelbrot created a 
set of fractals based on the equation:  f(z) = z2 + c.  
The output of each iteration was feedback into the 
input for the next iteration.   The equation became 
the emblem of fractal geometry – the Mandelbrot 
Set. 
 
 
 

The Mandelbrot sequence at the top of the above figure (1, 2, 3, 5…10) is based on a static number of 
iterations per pixel for a set of complex numbers c.  By iteration 10, the classic shape is present (‘non-
deterministic’ fractal).  The black areas represent values that are members of the Mandelbrot set whereas 
deep red areas represent strict non-membership.  The red-to-yellow gradient signifies boundary 
membership values. 
 
A Deep Dive into the ‘Monster’ 

The ‘heart’ of the Mandelbrot Set is a perfect 
cardioid which is a curve that can be traced 
out by a point on the perimeter of a circle 
that is rolling around a fixed circle of the 
same radius. A cardioid is also the inverse 
curve of a parabola with its focus at the 
center of inversion (‘Practical Parabola’, pg. 
10). 
 
 
 
 
 

 
‘Tendrils’ project out around the small 
black circles that circumvent the 
cardioid.  The top circle has three 
tendril branches. On its left side all the 
black circles have an odd number of 
tendrils.  On the right-side, the tendril 
count is and even and odd. 
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Valley of the Seahorses

 

 

Valley of the Double Spirals

 

Fractals in Nature 

 
 
Fractal Applications 
Fractal research has been applied to many technological and scientific disciplines including: heat 
exchangers, digital imaging, urban growth, enzyme research, signal & image compression, computer 
graphics and game design, fracture mechanics, T-shirts and other fashion, camouflage, digital sundial, 
networks, medicine, neuroscience, diagnostic imaging, pathology, geology, archaeology, soil mechanics, 
seismology, financial market analysis and antenna design. 
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Nathan Cohen attended an astronomy conference where Dr. 
Mandelbrot discussed the large scale of the universe and the 
potential of fractals for being good research tools to improve 
structure research.  Cohen, being a hobbyist ham operator, 
thought about making an antenna in the shape of a fractal. To 
test his idea, he built a simple snowflake antenna for his ham 
radio.  The antenna worked and it took up less than a quarter of 

the space of a traditional antenna. Cohen discovered that the fractal antenna was receptive to many 
frequencies.  Self-similarity was the key.  He and others later demonstrated mathematically that the fractal 
approach was an optimum way in antenna design (using Maxwell’s electromagnetic equations).  Fractal 
antennas are now used in most cell phones. 
 
 
CH7 – ALGEBRA 

In algebra we are concerned with equating like with like (the 
original Arabic word meant the reunion of broken parts or restoring 
to normal).  There is always a risk using an analogy since 
analogies seldom fit exactly.  Put on a balance two identical balls – 
they balance out.  Replace one of the balls with shoes.  Balance 
can also be achieved.  Way to explain the Identity statement: (a + 
b) = (b + a) and working with non-identical items. 
 

Math rules for multiplication 
Commutative:  ab = ba 
Associative: a(bc) = (ab)c 
Distributive: a(b+c) = ab + ac 
 
Note:  symbolism is being used; “ab” means a x b.  Let no one try to tell you that mathematics, and 
particularly its symbolism is clear, concise and unambiguous.  It is a mess. 
 
We have had to accept English spelling.  To illustrate the mess, look at these conventional notations: 

 
A symbol has been written by the numeral 2. In every case ‘is’ means 
something quite different. 
 
 

The distributive rule expresses how addition and multiplication related one to another.  The rules for 
subtraction and division are basically a reverse or inverse process. 
 
In traditional algebra we learned at school, we looked at expressions with letters in them and tried to 
figure out how to rearrange them, such as: 
3a + 2b +4a + 6c - 2a + c – b =  a(3+4-2) + b(2-1) + c(6+1)   =  5a + b + 7c 
It was slog work. Endless hours were spent in the exercise, requiring practice, but nothing creative or 
really thoughtful.   
 

Some expressions are called formulae - usually when they express one particular result.   
When Galileo built a ramp to study the motion of falling objects, he discovered that 
distance is proportional to time squared – the Law of a falling body.   
The formula for the distance is: x = V0t + 1/2at2.  As an example, let’s calculate the 
distance a stone falls after 3 seconds.  The initial velocity (V0) is 0 and the acceleration 
(a) due to gravity is 32ft/sec2. Plugging in the parameters and variables into the distance 
formula: x = 0 + ½(32)(32) = 16 x 9 = 144 feet. 

 

  

2 ½ is 2 + 1/2 
25 is (2 x 10) + 5 
2a is 2 x a 
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Fundamental Theorem of Algebra 
Striped to its essence, the fundamental theorem of algebra states that a single-
variable, degree n polynomial has exactly n roots.  A degree 1 polynomial has one 
root (or solution) - known as ‘linear’ equation.  A degree 2 polynomial has two roots 
whose characteristic is a curve (quadratic).  A degree 3 polynomial, having three 
roots, is also a curve, but with a faster rise. 
The equation to the left (x2-5x+6=0) has the two roots x=2 and x=3 (the parabola 
intersects the x-axis twice).   

 
Imaginary Numbers & 3-D Space 

 
In Chapter 5, Imaginary Number (pg. 5), the 
equation x2 + 1 = 0 was shown to have no roots 
(the graph does not cross the x-axis). The 
traditional x-y cartesian graph is unable to show 
the 'imaginary' roots (i, -i) since it is a two-
dimensional graph.  
 
 
 

The imaginary roots are revealed with a 3-D graph which implies that the solutions to the "x2 + 1 = 0" 
equation is a 3-D shape (!). The imaginary plane points upwards from the ‘real’ plane x-axis. It is in this 
plane where the imaginary roots are located (for a complete explanation visit a math tutorial on the 
Internet). 
 
Linear Algebra 

There are many applications that involve multiple linear 
equations of degree 1 with more than one variable – a branch 
of mathematics known as ‘linear algebra’.   The basic rule in 
solving linear equations is that the number of equations must 
be no less than the number of variables.  Suppose we are to 
find the solutions of three equations with three unknowns (x, y, 

z).  The brute force method would be to use one of the equations and to solve for one of the variables (x = 
ay + bz) and then to plug that variable (x) into one of the other two equations and to repeat the process 
until the three variables are solved for.  Linear Algebra simplifies this process with a set of n x n matrix 
rules.  The example below illustrates the ‘elimination method’ to solve for x, y, z from three equations.  
The goal is to produce one row with one zero and another row with two zeros (done by row multiplication 
and addition/subtraction). 
 

 
 
There are problems, such as airflow past an aircraft wing or water past the supports of a bridge that are 
quite complex if the shape is not simple.  Transformations can be used in such problems to reduce the 
difficult solutions to an easier one.  It can be quite sophisticated, but the principle is to transform the 
problem to one that can be tackled, and a matrix may be one of the techniques for doing so. The 
ramifications of matrices are considerable and have the ability to solve practical applications that lie 
beyond the everyday. 
 
Linear Algebra behind Google 

The speed of Google's ability to search for web pages is 
based on its patented PageRank Algorithm which 
quantitatively rates the importance of each page on the web. 
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The ranking process is based on standard linear algebra (plus some other 'magic' math). For complete 
details, search the article, "The $25B Eigenvector - The Linear Algebra Behind Google". 
 
Polynomials 
In Chapter 5 (Numbers) algebraic numbers began with the problem of taking the square root of 2 since it 
could not be expressed as a ratio of integers (A/B). When the rules of math break down, a new branch of 
mathematics opens up.  The square of 2 problem opened the mathematical branch known as the 
Polynomials. The equation to solve 2 is:  x2 – 2 = 0.  But that is the particular answer. The general 
answer became the finite polynomial function, which is an expression built from whole number constants 
and symbolic operators (additional, multiplication & exponentials).  Formally, the polynomial is written as: 
 

 
 

Power Series 
Ok, now were starting to look like ‘real’ math – messy and complicated looking. The above general 
polynomial is ‘cleaned up’ using the summation notation, which turns the polynomial function into: 

 
Better – kind of beautiful.  When ‘n’ is infinite, it’s known as the ‘Power Series’. 
(an advanced expression is the ‘Taylor Series’, pg. 29). 
 

 
Binomial Theorem 

The binomial theorem expands a two-term polynomial (x + y)n as: 

 
where the constants n and k are whole numbers. The Binomial is the 
simplest kind of polynomial. For example, if n = 4: (x + y)4 = 1x4 + 4x3y + 
6x2y2 + 4xy3 + 1y4. The binomial coefficient for varying n and can be 
arranged to form Pascal's Triangle. 

 
Algebraic Polynomial – Real World Application 

Early 20th-century airplanes were known as biplanes due to wings stacked one above 
another.  It was the era of wood and cloth construction where the bi-wings were braced 
with wires and struts - similar to the mechanical design of truss bridges. Advances in 
engine power and aluminum manufacturing in the 1930's ushered in a new era in 
aviation - the metal cantilever monoplane.  Stronger metallic wings removed the need 
for multi-sets of wings and external bracing.  Previous airfoil design was largely based 

on empirical 'trial & error' efforts.  To improve the lifting ability of the new metallic wings, intensive formal 
research was put into airfoil design, where 'formal' means mathematical. 

 
Aeronautical researchers used the polynomial function to mathematically 
describe the shape of an airfoil – a boon for wind tunnel research and for 
consistent, quality manufacturing.  In the beginning a four-digit code was 
used to define the wing profile (eg, NACA 2412).  Part of digits related to 

coefficients of the polynomial function.   A sample of an airfoil algebraic polynomial looks like: 

 
If that appears messy and complicated – it is.  What happened to the integer coefficients?  Welcome to 
the real world of engineering mathematics.  The trick is to multiply all the terms of the airfoil function by a 
specific (large) number to make all the decimals turn into whole numbers. 
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Algebraic Polynomial – Modeling:  Predicting the Past & Future 
Algebraic polynomial equations are commonly used to mathematically model 
a system to predict conditions of the past or the future.  The ‘system’ widely 
varies – financial markets (derivatives), environmental systems (global 
climate change), physics (computational physics), astrophysics, climatology, 

chemistry, biology and human systems in economics, psychology, social science, and engineering. 
For an engineering example, a predictive model can be created to determine the efficiency of an office 
building’s cooling plant.  An engineering firm offers an energy-savings system to lower the cost of 
generating chilled (cold) water for the building’s air-conditioning units.  After the system is installed, the 
management is going to wonder if the new system is really saving energy and money.  The present cost 
of running the plant is known (from the utility bills), but a model is needed to predict what the energy and 
utility cost would be without the new system – a model to predict past conditions. 
 
Algebraic Polynomial – Numerical Analysis 

One approach is to sample the electrical energy (kWh) of the 
various components (chiller, pumps, fans) for a specific period of 
time.  The longer the sampling period, the better the predicative 
model or equation.  Modern spreadsheets, like MS-Excel, can 
perform numerical analysis on the energy data and calculate the 
polynomial modeling equation.  The chart to the left shows one 
possible modeling equation for a cooling plant. 

This is a simplistic example, for quite often in real world applications several separate modeling equations 
are required to predict the system behavior.  This is known as “piecewise” modeling, where each ‘piece’ 
equation is determined by a specific range of input data (mathematicians call it ‘boundary conditions’). 
 
Sequence 
In mathematics a sequence is collection of objects in which repetitions are allowed.  Sequences can be 
finite or infinite (eg, the sequence of all even positive integers).  In computing and computer science 
sequences are sometimes called strings, words or lists (infinite sequences are called streams). The 
convergence properties of sequences are useful in the study of functions, spaces and other mathematical 
structures.  Sequence is the basis for the mathematical series – important in differential equations and 
analysis. 
 
Fibonacci Sequence 

In 1202 Leonardo of Pisa introduced the sequence of 
Fibonacci numbers. Each number in the sequence is the 
sum of the two preceding numbers starting with the root 
number one:  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, etc. 
While the number of Fibonacci numbers is infinite, 

sequence is not an ‘infinite series’, as discussed earlier – no operations are performed on the terms.  
Interestingly, the ratio of two adjacent Fibonacci numbers progresses towards the Golden Mean (144/89 = 
1.618).  The Fibonacci sequence and Golden Mean ratios appear everywhere in the universe.  The spiral 
is the natural pattern of water flowing drown a drain; the flow of air in tornados and hurricanes; the spiral 
form of the Nautilus shell; the number of lines in the spirals of a sunflower; the spiral of a galaxy.  The 
Golden Mean ratio is also all over the human body: the ratios between bones and the length of your arms 
and legs; the ratio in the distance from the navel to your toe and the distance from your navel to the top of 
your head. 
 
Mathematical Series 

A mathematical series is the sum of the terms of a sequence. 
Mathematicians use summation notation to express the series 
compactly. An infinite series consists of an infinite amount 
terms where the sum, ‘in the limit’, is either infinite 
(‘divergent’) or a value (‘convergent’).   
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Arithmetic Series 
A practical example of a finite series is a bank loan 
where a monthly amount is paid for a finite period. The 
example to the left illustrates a $50 per month payment 
for 1 year (interest not considered for simplicity).  
 

When there is a constant difference between each consecutive term (ie, $50) then the sequence is known 
as an arithmetic sequence or series when the variables are typically independent of each other. The 
arithmetic mean (or average) of a series of numbers is the sum of all the numbers divided by the total 
numbers ($600/12 = $50). 
 
Geometric Series 

The example to the left illustrates a savings 
account with 10% compounded interest.  The 
initial amount is $50 and after 1 year the 
amount is $1,069.21. 

When there is a constant ratio between each consecutive term (ie, 55/50 = 1.1) then the sequence is 
known as a geometric series where the variables are typically dependent on each other (like the return on 
investment over a period of time). When there is a compounding effect in a series the geometric mean is 
more appropriate method to determine the ‘average’. The geometric mean is nth root of the product of n 
numbers. For two numbers, the geometric mean = (a x b)1/2. 

 
To illustrate the importance in selecting the geometric 
mean over the arithmetic mean, consider the return on 
investment for an amount of $100 over 2 years.  Suppose 
the 1st year return was -50% and the 2nd year return was 
+50%.  The arithmetic mean = (-50%+50%)/2 = 0%. But 
that gives the wrong impression that the investor is 
breaking even on the investment (no loss or profit).  For 

the 1st year, after a 50% loss, the principle is $50. For the 2nd year, after a 50% gain, the principle is $50 x 
1.5 = $75.  Using the geometric mean provides a formal way to determine the annual rate of return (to 
account for negative interest, 1 is added to the percentage):  [(1-0.5) x (1+.5)]1/2 -1 = -0.134  or -13.4% 
annual return. 1st year principle = $100 x (1-0.134) = $86.60.  2nd year principle = $86.60 x (1-0.134) = 
$75.00. 
 
Geometric Series: Estimate by Bounding 
This review of mathematics is largely concerned with calculation, however estimation plays an important 
role when we don’t need a precise result.  There are times where we just need to determine a reasonable 
result to decide on an action, like ‘too big’, ‘too small’ or ‘just right’.  Greater level of precision requires 
precise mathematical equations and data (and typically some assumptions or limitations).  The 
consequence is that precise answers take more time.  Many questions do not need persnickety precision. 
 
It is often easier and more reliable to estimate upper and lower limits for something than to estimate the 
quantity directly. For example, to estimate the amount of time each day the average person spends 
talking or texting on a cell phone.  A reasonable lower bound is 2 minutes and an upper bound is 3 hours 
or 200 minutes.  Taking the arithmetic average would be (2 + 200)/2 = 101 minutes, but that gives an 
estimate that is a factor of 2 lower than the upper limit (200/101 = 2), but a factor of 50 greater than the 
lower limit (101/2 = 50). The typical goal of an ‘estimate’ is a result that’s within a factor of 10, otherwise 
we’re way off (think of a dart board analogy – a bad estimate doesn’t even hit the board).  The solution is 
to take the geometric mean.  Going back to the 'average' phone minutes, the geometric mean = (2 x 
200)1/2 = 20 minutes.  Now the estimate is a factor of 10 lower than the upper limit (200/20 = 10) and a 
factor of 10 greater than the lower limit (20/2 = 10). 
 

Another example of ‘Estimate by Bounding’, is the problem of estimating the number of 
pianos owned in the city of Los Angeles. The ownership lower bound is 1% of the 
population and the upper bound is 10%. The geometric mean is (1x10)1/2 = 2-3%. 
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To estimate the population of Los Angeles, a large city, the lower bound is 1 million and the upper bound 
is 300 million (estimate of the US population; sometimes basic knowledge required).  So, the population 
geometric mean = (1x106 x 300x106)1/2 = 17 million1. So, the piano ownership estimate for Los Angeles is 
between 1/3 (340K) and half a million (500K) pianos.  Remember, the goal is to get an estimate within a 
factor of 10. So even if we estimated the US population at 100 million the estimate would still be in the 
ballpark. 

Earlier it was discussed that an infinite series 
can ‘coverage’ to a finite value which seems 
counterintuitive. The geometric series to the 
left gives a visual ‘picture’ of convergence:  a 
unity box is divided it in half, then again and 
again… Each successive term has a common 
ratio of ½ - the tell tail sign of a geometric 
series (note:  not all geometric series are 
convergent). 

 
The constant e, base of the natural 
logarithm, can be expressed as an 
infinite series of the reciprocals of 
factorials.  This is an important function 
to look at: a special infinite series that’s 
not affected by differential and not by 
integration. The exclamation mark after 
the number means to multiply it by all 

the numbers below it (4! = 4x3x2x1).  Without going into the grubby details, if we differential the above 
series, we get the original series (!).  When x=1, the expression is 2.7182818… The number is called e.  If 
we differentiate ex we get ex (the slope of e is e!). 
 
e is used in phasor notation, probability theory, calculus, compound interest and more.  In 2004, Google 
filed to go public with an unusual e billion-dollar auction offering ($2.718.. billion). 
 
Harmonic Series 

The harmonic series derives from 
the concept of overtones, or 
harmonics in music.  The 
wavelengths of the overtones of a 
vibrating string are 1/2, 1/3, 1/4, etc. 
of the string's fundamental 
wavelength. Every term of the series 
after the first is the harmonic mean 
of the neighboring terms. 

 
Harmonic Series: Example #1 

Example of applying the harmonic series to 
cantilever blocks.  Given a collection of identical 
dominoes, using ‘harmonic positioning’, it is possible 
to stack them at the edge of a table so that they 
hang over the edge of the table without falling. The 
counterintuitive result is that one can stack them in 
such a way as to make the overhang arbitrarily large, 
provided there are enough dominoes. 

 
  

 
1 2015 estimate was 19 million. 
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Harmonic Series: Example #2 
Another problem involving the harmonic series is the ‘Jeep problem’, otherwise known as the desert 
crossing problem or exploration problem.  The problem is to maximize the distance the Jeep can travel 
into the desert with a given quantity of fuel. The jeep can only carry a fixed and limited amount of fuel, but 
it can leave fuel and collect fuel at fuel dumps anywhere in the desert. 
 
Determining Pi with Infinite Series 
In 1985 pi was calculated to 17 million digits using the Ramanujan formula (developed in 1910).  The 
Ramanujan formula was ideal for computers since pi converged exponentially compared to other 
algorithms. In 1989, the Chudnovsky brothers published the Chudnovsky algorithm (based on the 
Ramanujan formula). As of December 2013, the Chudnovsky algorithm holds the world record 
calculations of pi at 12.1 trillion digits. 
 

 
 
The Bailey–Borwein–Plouffe (BBP) formula (1995) lets you skip straight to any digit of pi without working 
out the rest of the number - a little bit of math sorcery. 
 

 
 
Different Approaches to Algebra 

 Enclosures 
Venn Diagrams 

 
 
“Venn Chess” - Venn rules applied to chess. 

 
 
Are we still doing algebra?  It is a matter of standpoint, but the mathematician would say we 
are.  Continuing on with looking out of the ‘algebra’ box… 
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 Vectors 
Things that must be described by more than one number are called vectors:  a pair of Levis (length & 
waist), a bolt (length, diameter, threads/inch), a street intersection by two streets. Things that are 
described with only one number are known as scalars, like weight, or speed. 
 

Let’s consider a mechanical or engineering notion.  When a force acts on something 
that is fixed at one point and acts off center - it tends to turn.   
   
 

 

Mathematicians (and physicists) use an ‘arrow’ to describe a force.  The formal 
name for the arrow is a vector.  The direction of the arrow shows the direction of 
the force, and its length shows the strength of the force (velocity is also 
represented by a vector).  The turning effect is expressed using vector 
mathematics (vector algebra) which have their own rules.   

Since a vector represents a number and a direction they do not behave exactly like numbers - vectors do 
not have a commutative law for multiplication (ab  ba). The first introduction of non-commutativity came 
from William Rowan Hamilton (‘Hamiltonian Mechanics’) and his development of quaternions, a number 
system that extends complex numbers into three-dimensional space (quaternions calculations are found 
in the 3D rotations of computer graphics, like in video games). It was after 15 years of intense intellectual 
effort that Hamilton considered the idea that an algebra could be consistent even with a non-commutative 
law. 
 
Tensors 

Moving a square’s position from A to B can be represented by a vector.  If 
square A is pulled into the shape of a parallelogram it needs to be 
represented by what is known as a tensor (the name comes from the tension 
that deformed the square).  A tensor is made up of more than one vector. 
Using tensor ‘algebra’ a square would be represented by the tensor (,) 
and the parallelogram by the tensor (, ).  Each vector is represented by a 

string of scalar numbers, like (3, 5, 7). 
 

If this ‘tensor talk’ sounds a bit out of this world, the next time you look 
up at the clouds, sometimes you see tensor transformations going on! 
 
 

 
Super Tensors 

Ordinary tensors can change the direction and length 
of straight lines but cannot curve straight lines.  Super 
tensors can change straight lines into curved lines, as 
well as change their direction and length.  Super tensor 
is a vector that is made of a string of ordinary tensors.  

The transformation of a human skull into the skull of a baboon or dog can is an example of a super 
tensor.  

 
Super tensor equations were essential to Einstein's General Theory of 
Relativity which made the amazing connection between a geometric view 
of the universe with a stress-energy physical view of matter (that matter 
influences space and vice-versa!).  Einstein's Field Equations (EFE) 
updated Newtown's description of gravity with the new vocabulary of 
'spacetime' and the wild concept of spacetime curvature. 
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Quite often a mathematician has no notion that his algebras might fit in a real model and perhaps he did 
not care.  With that said, our wily mathematician could get a little ‘crazy’ and imagine a 'super-super 
tensor' - vectors made of a string of super tensors!  
 
Algebra’s Elements 
The essential feature of mathematics is that the rules cannot produce a contradiction - they must be 
internally consistent.  Sounds a little like philosophy, but that’s a topic for later. 
 
 
 
Trigonometry 

The term “trigonometry” is derived from the Greek word meaning "triangle 
measuring".  In general, it is the study of a particular type of triangle:  a three-
side figure with one 90° angle – known as a right triangle.   
 
The history of triangles dates back to antiquity - the right angle was an 
indispensable tool for Egyptian and Babylonian builders. 
 
 
 
 
 

Our modern word "sine" is derived from the Latin word sinus, 
which means "bay".   Early navigators, knowing with width of a 
bay, could determine their distance to a point using simple 
navigation tool and trig tables. 
 
The word “tangent” comes from Latin tangens meaning 
"touching", since the line touches the circle of unit radius. 
 
 

Sine Calculation Example 

 
Note: the other angle is calculated by knowing that all the angles of a right angle add up to 180 degrees: 180° - 90° - 35.4° = 54.6°. 
Further, the adjacent distance is be calculated by using the Pythagorean Theorem (h2 = o2 + a2).  a2 = (3,970)2 – (2,300)2. a = 
(10,470,900)1/2 = 3,236 feet. 

 
Cartesian Coordinate System (CCS) versus Polar Coordinate System (PCS) 

The illustration to the left illustrates the benefit of 
using the Polar Coordinate System (PCS) over 
the Cartesian Coordinate System (CCS).  Using 
the navigation example, the ship is at the center 
of a circle. One of the legs of a right triangle is 
the width of the bay. PCS introduces a new 
variable – the angle. 
The “PCS” ship uses the angle (and trig table) to 
determine the length of the other leg(s) 
(distance from land).   

  

Algebra = Some Elements + Some Operations + Some Rules 
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The trigonometric functions are the ratios of two sides of a right triangle containing the angle. There are 
three main functions: Sine, Cosine and Tangent.  The reciprocal functions are cosecant, secant and 
cotangent (the prefix "co-" refers to complementary angle). 

 
 
Formalization of the Trig Table 
The early astronomers created trig tables by using the sum-angle formula for sines: sin(A+B) = sinAcosB 
+ sinBcosA.  The process to obtain values was 'bootstrapped' from known values like sin(45°) or sin(30°).  
The sine of 72° was determined from Euclid's 5-pointed star. The sine of 3° was determined from the 
sines of 75° and 72° (Ptolemy figured this out in the 2nd century AD). The solutions, especially for 
degrees less than 3°, were time consuming and not very accurate or elegant. 
 
Mādhava of Sangamagrāma (1340-1425), Indian mathematician and astronomer, was the first to use the 
infinite power series to determine the values of trigonometric functions (Power Series, pg. 18).  A less 
time consuming and elegant solution. 

 
Trigonometry reached its modern form from the mathematics of Leonhard Euler (1707-1783). His famous 
“Euler’s Formula” correlated trigonometric functions to complex numbers:  eix = cos(x) + isin(x).  In the 
mathematical series section (pg. 19), ex is expressed as an infinite series of the reciprocals of factorials. 
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CH8 – THE CALCULUS 
The word calculus comes from the Greek word for a pebble, or a stone used in calculation. There are 
some difficult ideas at the very beginning of the calculus, and if we get too deeply involved with 
infinitesimals we can be led out of our depth.  Some of the notions of calculus are not easy to square with 
our basic intuitions.  In short, calculus is used to study how things change, like the movement within 
space. 

 
A stone falls.  Aristotle held that how fast the stone fell depended on how heavy it was and 
that in fact it was proportional to its weight.  That was not only untrue, it did not begin to 
discuss what was meant by ‘fast’.  Science is about prediction and scientific prediction lies in 
experiment.  
In studying the motion of objects Galileo wanted to know where the stone was at any time, 
how fast it was going and how it was accelerating – very advance questions that Aristotle and 
his contemporaries did not ponder. 

 
Sir Isaac Newton (1642-1727) remarked that if he had seen further than others it was because he had 
stood on the shoulders of giants, like Galileo.  Newton’s skill lie in sorting through vast amount of other’s 
observations (ie, Galileo, Kepler) and reducing it, by asking ‘why’, to simple rules.   
 

Newton said that forces were responsible for motion.  That a constant force 
produces a constant acceleration.  That was the surprise.  Even today, ask 
an ordinary person what a constant force would produce and he will think it to 
be a constant speed.  But we experience an acceleration when we put our 
foot on the accelerator and pull away in a car (thinking vs. experiencing). 

 
The experience of seeing a stone skimming across a slippery icy pond is nearer the statement made by 
Newton that when there is no force then the object moves at steady speed (or stays still). 
 
Motion under gravity is one of the few situations where the acceleration is steady.   

 
If we look at the speed of driving over time it might like something like 
the curve to the left. 

 
 

Differential calculus aims at calculating the slope – of finding the line called the tangent (Latin tangere, to 
touch). The process involves of taking smaller and smaller gaps around the point to find the slope which 
ultimately leads to the term ‘infinitesimal’ calculus (a rigorous proof of infinitesimal calculus is intricate and 
beyond this summary). 
 
The operations of differentiation and integration is similar to remembering the multiplication tables.  For 
example, the derivative of x2 is 2x, of x5 is 5x4, of sin(x) is cos(x) and of cos(x) is –sin(x).  That the integral 
of x2 is x3/3 (+ a constant) and of x5 is x6/6 (+ a constant) and so on.  The important discovery is that 
integration and differentiation are inverse processes (like multiplication & division, to a degree).  This fact 
is known as the fundamental theorem of the calculus. 
 
Adding, multiplying, dividing and subtracting are operations on numbers.  Integrations and differentiation 
are operations on expressions or functions.     
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Calculus Applications 
Application #1 

Situation:  Plot of land and a wall. 
Given:    100 ft. of fence. 
Problem:  Enclose as much land with the fence in a rectangular 

shape against the wall.  Calculus ‘maxima’ problem. 
 

 
First, let’s solve the problem with the ‘Trail & Error’ method:  put in various values for x and find the 
maximum area.  We find that when x=25, we get the maximum area (A=1250). 
  

x 5 10 15 20 25 30 35 40 
A 450 800 1050 1200 1250 1200 1050 800 

 
To solve it formally using calculus, it’s helpful to get a visual of the area equation. The principle depends 
on the picture, but the method is precise.  What is more important is that it can be applied to examples 
where trial and error on graphical methods is not effective (see next problem). 
 

 
 
Application #2 

Situation: Postal regulations state that for a rectangular box the sum of the length and girth must 
not exceed 10 ft. 

Problem: What is the largest volume you can send by post? 
 

 
 
Other calculus examples? 
 

Rocketry.  The amount of fuel in a rocket determines how far it will travel (eg, parking orbit 
of the Apollo Saturn V missions).  As the fuel burns the spacecraft gets lighter.  With less 
mass it can travel farther.  Unlike a car’s gas tank, the total travel distance from a rocket 
tank of fuel is more complex – necessary to use calculus to determine the total amount fuel 
required when the changing mass of fuel affects the overall distance.  Probably why they 
call it ‘rocket science’. 
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Jet Aircraft. The calculus of fuel burn-rate is found in the control 
of commercial jet aircraft.  The maximum total range of the 
aircraft is limited by fuel capacity of the aircraft.  The Breguet 
Range equation is summarized as the rate at which fuel is burned 
equals the rate at which aircraft weight is reduced:  dW/dt = -fgT  

(W = weight, T = Thrust, f = mass of fuel burn per unit of thrust per second).  The calculus of the fuel 
burn/weight property is incorporated into the aircraft’s ‘auto cruise’ system which controls the throttle to 
maintain the targeted air speed.  Very helpful in reducing the pilot’s work load. 
 
Other down-to-earth examples of calculus include: cruise control system in your car; smart thermostat in 
your home, the graphics behind gaming software. 
 
Two Very Important Differential Equations 
Calculus shows up behind two common and important behaviors in nature:  
  1) Natural Exponential Function. 
  2) Simple Harmonic Motion (SHM).  
 
Starting with the general second-order differential equation Ay" + By' + Cy = 0 a matrix is created with 
various constant values (A, B, C): 

 
 
Case #1: Natural Exponential Function 

When the first derivative or rate of change of a quantity is 
proportional to itself the result is exponential. When the 
constant of proportionality is positive (+C) the quantity 
undergoes exponential growth and exponential decay 
when the constant is negative (-C). 

Applications: 

 Life science: growth of microorganisms, pharmacology & toxicology. 
 Physical science: geophysics, heat transfer, luminescence, chemical & nuclear chain reactions, 

optics, thermoelectricity, vibrations (mechanical & electrical). 
 Social science: finance (eg, interest rates). 
 Computer science: Internet routing protocol. 

Case #2: Simple Harmonic Motion (SHM) 
When the second derivative of a quantity is proportional to itself times a negative 
constant, the result is an oscillatory motion that is sinusoidal in time known as 
Simple Harmonic Motion.  SHM occurs when the force on a body is not constant 

(eg, elastic restoring force of a spring). In Case #3 the quantity is also influenced by the first derivative (y’) 
which produces a dampening (or growth) effect. SHM examples in everyday life: pendulum, swing, car 
shock absorber, musical instruments, bungee jumping, hearing & rocking of the baby cradle. 
 
Fourier Series 

A very powerful mathematical tool is the Fourier series. In essence, the Fourier 
series decomposes a periodic function (or signal) into an infinite sum of sines and 
cosines (trigonometric polynomial).    



29 
 

The study of Fourier series is known as harmonic analysis and is extremely useful as a way to break up 
an arbitrary periodic function into a set of simple terms that can be plugged in, solved individually 
(analysis), and then recombined to obtain the solution to the original problem (synthesis). Periodicty can 
be in time (eg, SHM) or in space (eg, heat distribution on a circular ring). Fourier analysis is often 
associated with symmetry. 

 
In layman terms, the Fourier Transform (FT) finds a recipe.  For 
example, to determine the recipe of a smoothie, the FT reverse-
engineers the recipe by filtering each ingredient. It's important 
that each filter be independent.  The orange juice filter must 
capture only orange juice, nothing else. If the filters behave 
correctly, we can get back the original smoothie by blending the 
ingredients. 

 

 
 

The above equations look awfully complex, and they are to an extent.  The point is to illustrate the 
connection between infinite series and calculus.  

Taylor Series 
Another powerful tool that’s analogous to the Fourier series is the Taylor series 
which represents a function as an infinite sum of powers rather than an infinite 
sum of sines and cosines.  The coefficients are calculated from the function’s 
derivatives, f(n), at a single point a. 

 
The Power Series (pg. 18) is the ‘reference’ equation for an 
infinite polynomial function.  A convergent power series is 
known as an 'analytic’ function which is infinitely 
differentiable.  A mathematician would say, “a function is 
analytic if and only if its Taylor series about x0 converges to 

the function in some neighborhood for every x0 in its domain (the set of x). 
 
Elementary Analytic Functions: 1) all polynomials, 2) exponential function, 3) trigonometric functions, 4) 
logarithm functions, 5) power functions 
 
Special analytic functions (at least some in some range of the complex plane): 
1) Hypergeometric Functions 
Determines the solutions of a second-order linear ordinary (single-variable) differential equation (ODE): 

 
 2) Bessel Functions 
Determines the solutions of Bessel’s inhomogeneous second-order differential equation: 
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Bessel functions are useful in solving problems of wave propagation: 
electromagnetic waves in a cylindrical waveguide, pressure amplitudes of 
rotational flows, heat conduction in a cylindrical object, modes of vibration 
of an acoustic membrane (eg, drumhead, figure to the left).  
The Bessel function also provides solutions to the radial Schrödinger 
equation for a free particle (definitely ‘Grad’ level math). 
 
 
 

3) gamma function  
Factorial of non-integers and complex numbers. Used in probability and statistical models. 
 
 
CH9 – TAKING A CHANCE:  LIVING WITH UNCERTAINTY 
“It would be very unexpected for the unexpected not to happen sometimes”.   – Isaac Asimov 
 

A scientific study of uncertainty involves the mathematics of probability. When an 
insurance company takes a bet with you as to how long you are going to live, it does not 
know whether it will win or lose (it loses if you die early – you win, kind of).  Nor is it 
concerned whether it wins or loses with you.  The number of people with whom it has 
similar bets makes the insurance company sure of its eventual financial gain.  This might 

sound macabre, talking about betting on one’s life, but that is what life insurance is.  And the insurance 
companies have spent a lot of time and effort on actuarial work – the measurement and management of 
risk and uncertainty.   
 
In analyzing trends, economic or political, we cannot say what will happen, but we can assign 
probabilities on the possible outcomes. 
 
The rule-of-thumb principle called the Pareto Principle states that, for many events, roughly 80% of the 
effects come from 20% of the causes – “80-20” rule.  The Pareto Principle can be a very effective 
problem-solving tool.  For example, where to focus the first efforts of an investigation. 
 
Pareto Principle Examples: 
 1) 80% of the land is owned by 20% of the population 
 2) 80% of the peas come from 20% of the peapods. 
 3) 80% of a company’s profits comes from 20% of its products. 
 4) 80% of complaints come from 20% of the population. 
 
Karl Popper (philosopher of science, 1902-1994) referred to social philosophies that possessed predictive 
abilities as historicism - outside the realm of as empiricism and rationalism. Historicism neglected the role 
of traditions (eg, the interior of the collective).  His main objection was against the assertion by some that 
we are at the mercy of trends and cannot resist them.  However, Popper attempted to make a clear 
distinction between scientific prediction and historical prophecy. 
 
The trauma of wanting to be sure that what we are doing is right is not one that the probabilistic gets 
involved with.  He or she knows that certainty is not possible.  You take the 60% route and do not fuss. 
That is the right and sensible thing to do.  Sometimes the “40%” comes up as it must do 40% of the time.   
 
Or that the odds were in fact 40-60, not as we thought.  That’s depends on the information available to us. 
The ‘take home’ message is only to have regrets if we have failed to take into account things that we 
could have known before the decision, or that we wrongly judged what we did know.  It takes a good deal 
of internal security to live with uncertainty, but it can be quite comforting when achieved. 
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CH10 – MODERN MATHEMATICS 
“Thus mathematics may be defined as the subject where we do not know what we are talking about, 
neither do we know if what we are saying is true.”  – Bertrand Russel 
 
Sets 
It is the common perception that the value of mathematics in the everyday world lies in calculation.  It is 
useful, but so is sorting. 
 
“Sets’ is one trigger word for Modern Mathematics.   Examples of significate sets: 

1. Everyday sorting – shapes to warehouses to libraries. 
2. The beginnings of any science – the material is sorted into patters to find relevance. 
3. Objective knowledge and the philosophical bias of number2. 
4. Early concept formation and the beginnings of language. 
5. Comparisons of cognitive power. 
6. The logic that resides in particular words within language. 
7. Computer language. 

Russell and Whitehead started with undefined sets of objects and used the idea of pairing off which 
established a one-to-one correspondence between the objects of the two sets. 
 
It is now common practice in infants’ schools to approach number in this way.  Children are encouraged 
to collect sets of five object (paintbrushes, pencils, chairs, friends) to establish the “fiveness of five”. 
 
The process of making sense of our environment relies upon sorting and ordering what we see, hear, 
smell, taste and touch.  An essential part of this process for the human being is the language that goes 
with this sorting and ordering.  There seems to be an intimate relationship between early concept 
development, sorting (mathematical issue) and naming (the start of language).  There is ground for 
supposing that in our psychological processes, early mathematics, and language are closely knit. 
 
Sets have a relation to ‘intelligence’.  “What it is” and “how it develops” is a topic fraught with rational 
difficulties and bedeviled by emotional responses.  The ability to sort is clearly different in different 
individuals.  The ability to perceive samenesses and differences seems to be one aspect of cognitive 
power. 
 
George Boole published “The Laws of Thought” (1854) - established Boolean algebra. 
 
Mathematics abstracts the relationships that exist.  It removes the issue of what we are talking about, but 
is concerned with one idea lying within another, overlapping it, or being entirely distinct, as in a pictorial 
diagram.  We are now better able to understand Russell’s statement.  We do not know what we are 
talking about, for the nature of the sets is not the issue.  It is a matter of how they relate one to another. 
Nor are we concerned with truth. 
 

The theme of mathematical logic runs through the stories of Lewis Carrol (Alice in 
Wonderland), and some of Carrol’s syllogisms were quite complex. 
Syllogisms, dating back to the Grecian philosopher Aristotle, expressed what logic 
is about. In regard to proof, Aristotle’s ‘logic-chopping’ methods of syllogism is best 
understood as achieving a ‘bare proof’.  When Aristotle says, ‘Proof is reasoning 
that causes us to know’ is to be understood, in the modern sense, that the proof is 

accompanied by appropriate experience. 
Classical syllogism logic: 
 

Statement Logic Structure Observation 
All men (A) are moral (B). A = B The General. 
Socrates (C) is a man (A). C = A The Particular. 
Socrates (C) is mortal (B). C = B The drawn conclusion 

 
2 “God made the integers; the rest is the work of Man.” – Knonecker. 
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Venn diagrams can be a useful sorting mechanism.  The diagram at the 
left shows Aristotle’s syllogism explained with a Venn diagram: 
 
 
 
 
 
 
 

Lewis Carrol offered as many as ten statements from which 
to draw a conclusion.  Here’s an example of three 
statements: 
 1) Duck do not waltz.   2) No officer ever declines to waltz. 
 3) My poultry are all ducks. 

 
The conclusion ‘My poultry are not officers’ can be visualized with the Venn diagram: 
 
 
III – WORKING WITH MATHEMATICS 
CH11 – MATHEMATICS IN ACTION 
Pure vs. Applied Math 
At one time a sharp distinction was made between ‘pure’ mathematics and ‘applied’ mathematics. One 
can start in pure mathematics (conducted for its own sake) and ended up in some issues that are totally 
related to this world and the universe in which it moves.  Einstein said: “Is it not remarkable that 
mathematics, a study independent of experience, should be so adapted to the object of reality?”  There is 
something mysterious about it. No pure mathematician can ever guarantee that that his work will not be of 
practical use. 
 
The range of algebras developed by Grasseman and his development of Tensor Calculus later gave a 
deeper insight of space and time – a symbol system with strange rules that could in no way be expected 
to relate to anything in the physical world. 
 
Einstein’s mathematics of relativity and the later discovery that his predictions of Mercury’s path at its 
perihelion were closer to the truth than the mathematics of Newton. 
 
The reality is that mathematics, and science for that matter, answer only a small fraction of all the 
possible questions we can ask (Godel’s theorem set limits on how much we can actually prove).  
Mathematics can appear to have the illusion of success if we are preselecting the subset of problems for 
which we have found a way to apply mathematics.  One example is the impressive progress with linear 
systems. On the other hand, developments in nonlinear systems have been arduous and much less 
successful.  If we focus our attention on linear systems, then we have preselected the subset of problems 
where mathematics is highly successful. 
 
The reader is now asked to entertain a strong non-Platonism position where all physical laws are tainted 
with anthropocentrism and all physical models have no real interpretative value.  The interpretive value of 
physics is purely illusory.  After all, a beam of light passing through a slit knows nothing of Fourier 
transforms.  This is an overlay of human construct. 
 
Mathematical Modeling 
John von Neumann, the famous mathematician and polymath, stated all this more succinctly: “The 
sciences do not try to explain, they hardly even try to interpret, and they mainly make models.  By a 
model is meant a mathematical construct which, with the addition of certain verbal interpretations, 
describes observed phenomena.  The justifications of such a mathematical construct are solely and 
precisely that it is expected to work.” 
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With the success of the mathematical models in physics it’s easy to overlook where they don’t work well.  
Like in weather forecasting.  Predictions are typically good for a week.  For longer forecasts, small errors 
grow into big ones.  Daily weather is just too complex and chaotic for precise modeling.  So is the 
behavior of water boiling on the stove or the stock market or the interactions of neurons in the brain, 
much of human psychology and parts of biology. Biological, environmental and economic systems are 
very difficult to model with mathematics. The real world is inherently noisy and has a stochastic 
component (randomness) so the math can reach the height of intractability: stochastic, non-linear, partial 
differential equations with non-linear coefficients! 
 
When classifying physical data, it is known that ‘God does not always shave with Occam’s razor’. 
(H. Bensusan article, “God doesn’t always shave with Occam’s razor – Learning when and how to 
prune”). 
 
Discovering & Describing Patterns 
Mathematics is a human invention for describing patterns and regularities.  It follows that mathematics is 
then a useful tool in describing regularities we see in the universe.   
 
A skill of great importance in mathematics, and in many other studies, lies in seeing that problems are of 
the same type, that they have the same ‘shape’.  The term used in mathematics is ‘isomorphic’, from 
Greek meaning ‘having the same shape’.  One new branch of isomorphic mathematics is known as 
Operational Research (OR) which attempts to maximize performance in certain systems under given 
constraints.  Examples includes from locating a lost submarine to finding a lost ring.  Mathematician J.D. 
Bernal is recognized as OR’s early pioneer and significate contributor. 
 
The mathematician is sometimes accused of treating people as numbers or as things.  The individual 
mathematician may or may not do so.  It’s just the objective nature of properly solving a problem, like 
queuing theory - queues waiting to get into a hospital or the queues on the production line.  The worst 
situations are often achieved by muddled sentimentalists who are seized with the problem of one 
individual and allow them to jump the queue thereby causing more problems to others.  Unrestrained 
sympathy, unrelieved by any rational process, is not the best way to run an organization which needs to 
be both sympathetic and fair. 
 
 

 Another category of problem is concerned with allocation, best 
illustrated with a school system ‘catchment’ area.  In an urban area 
large enough to support five secondary schools, catchment areas 
are show to the left.  From the standpoint of the school district 
authorities, the catchment area boundaries reflect constraint logistics 
such as roadways and school size capacity.  For some parents 
catchment anomalies challenge the school’s logic, as seen in 
catchment area D where the home is closer to the school in area E.  
If the parents strongly desire school E (with good reason) the dictate 
of the school authority does not make sense. 
 

 
One of newest branches of mathematics is Graph Theory (not the type of graphs seen in algebra).  Graph 
Theory falls in domain of ‘discrete’ mathematics. Basically, it is the study of points jointed by lines.  
  

Example 1  Six people gather together.  Prove that there are either three who 
all know one another, or three who are all strangers.   
 
 
 
 
  



34 
 

Example 2  Bridges of Konigsberg. The river flowing through 
Konigsberg has two islands in it, the islands being connected to each 
other and the banks of the river by a total of seven bridges.  Is it 
possible to cross every bridge once and only once? 
 
 
 
 
 
 
 

 
Example 3:  Jugs of Wine  Two men have a full 8-gallon of 
wine, and each man has an empty 5-gallon and 3-gallon jug 
respectively.  What is the simplest way to divide the wine 
equally? 
Solving the problem with graph theory uses an ‘isometric’ 
paper with equilateral triangles. The ‘vertical’ axis equals 3 and 
the horizontal axis equals 5.  Start at (0,0) and travel to point 
‘A’ to fill the 3-gallon jug.  The solution is to find the best path to 

get to 4 gallons (A to H).  Dash line = 3-gallon jug to the 5-gallon jug.  Solid line = adding/subtracting from 
the 8-gallon jug. 
 
CH12 – ALGORITHMS, PROBLEMS & PURPOSE 
The word ‘algorithm’ derives from ‘Al Kuwarizmi’, which means ‘the man from Kuwarizmi’ – the surname 
of the Arab mathematician Abu Ja’far Muhammad ibn Musa.  His mathematical work introduced the 
Arabic system of numeration to Europe and the word ‘algorithm’ became attached to the arithmetic 
process. 
In modern times the word algorithm generally refers to any routine process by which you proceed from a 
question to an answer.  And ‘routine’ is not necessarily restricted to arithmetic process; it might lie in any 
area of mathematics or might even be the set of rules by which you work out by rota (eg, hospital or 
railway rota).  A computer cannot think, so it requires from you make a set of rules, appropriate to its inner 
properties.   Before the affordable pocket calculator, the number 7987.569 divided by 32.47 was done by 
the algorithm known as long division.  It was a tedious task that put people in the role of a machine. 

 

There is little virtue in teaching long division.  It instructed the dull and repelled the 
intelligent.  It engaged the conformer in a discipline in which if he continues to 
conform, he will fail, and it obscured from the creative the pleasure that they might 
derive from mathematics. In extreme cases, the presentation of mathematics as 
being based upon arbitrary rules, whose reason may not be sought, can be 
psychologically damaging. 

There are ways of going about problem-solving.  What makes it a problem is that there seems to be no 
special way of going about it.  Here are some useful rules 
: 
1) Don’t Start.  No attempt should initially be made to reach a solution.  Familiarized yourself with the problem and 
the problem statement. 
2) Stabilize the Problem.  Examine the problem from all angles.  For example if the problem stated ‘for every prime 
number’, consider temporarily eliminating the word ‘every’. 
3) Try an Easy Case. 
4) Reflect.  Watch out for being too clever; review the initial premise; etc. 
5) Draw a Diagram.  Pictures can help (can’t hurt). 
6) Generalized.  Focus on the general and diminish the specific. 
7) Search for Patterns. 
8) Consider the Complement. 
9) Does it Remind You of Anything?. 
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As with a piano, a note struck elsewhere in the room sets a string vibrating in sympathy, so it is with 
problems that need divergent rather than convergent thinking.  This leads us to what Edward de Bono 
calls ‘lateral thinking’. 
 
Those who are ‘too clever by half’ (TCBH) do tend to solve many problems quickly.  It does not follow, 
because they are swift, that they are necessarily deep thinkers.  It may be this type of problem at which 
they excel, and the reason for the speed lies behind the slogan. In ‘Intelligence, Learning and Action’, 
professor Richard Skemp refers to the ability of ‘resonance’ – sudden insights that yield economical 
solutions.  Insights that are influenced from one’s wide experience of problems and drawing of analogies 
between them.   
 
Attempts to measure intelligence are doomed to failure. Some will find number problems easy and those 
involving visualization difficult; other will find the reverse.  In regard to the general capacity of the two 
hemispheres of our brains, one side is believed to control linguistic and numerical abilities, where the 
other side involves spatial perceptions.  In any individual the imbalance may be very marked.  
 
Mathematics is seen by many as made up of rules and formulae which constrict and constrain.  This is 
because their main experience has been with algorithmic processes.  Mathematics, properly understood, 
is an area where questions and issues needing answers constantly arise. 
 
Examples: 
 1) Can we predict the number of open regions with any given number of lines? 
 2) Derive a formula for the number of different configurations in an n-line diagram. 
 
There used to be a fair degree of effort in solving tedious, ‘algorithmic-like’ problems.  With the affordable 
microcomputer, the donkey work disappears, and the amusement remains (see CH6, Fractals). 
 
Resolution vs. Solution 
History has shown us that many problems easily stated took centuries of effort to be solved.  Had their 
impossibility been proved, that in itself would be a solution.  A famous problem illustrates this point. 
 

The Greeks found many geometrical constructions such as developing a method for 
bisecting an angle using only a straight edge and pair of compasses.   
 
It’s been over a century now that the impossibility of trisecting an angle into three 
equal parts was established. 
 

 
It came through algebra, not geometry, that if the problem turned out to be a quadratic (involving x2) then 
it could be done with straight edge and compass.  If of higher order, it could not.  Trisecting an angle is 
equivalent to solving a cubic equation (involving x3) and it cannot be done in the terms stated.  Thus, 
mathematicians arrived at a ‘resolution’ of the problem, not a ‘solution’.    
 
Another way to look at the problem-solving process: 
1) Absolve. Ignore the problem (or delegate it).  Many ‘problems’ reported, especially in the technical realm, are not 

real problems and quickly go away or the level of the reported severity (and consequence) is greatly reduced. 
2) Resolve.  Satisfy.  Clinical approach: experiment, trial & errors; common sense; qualitative judgement. ‘Quick-fix’, 

‘Band-Aid’ fix.  Identify cause of problem and remove or suppress.  Return to previous state. 
Example:  a product is not meeting is technical specification but represents only a meager fraction of the 
company’s business.  Resolve:  modify the spec sheet (judgement – the investment to correct the situation greatly 
exceeds the ROI). 

3) Solve.  Optimize.  Research approach: formal experimentation, quantitative and formal (mathematical) analysis.  
Solution is the best of possible outcomes.  What they try to teach in college. 

4) Dissolve.  Idealize.  Redesign approach: eliminate the problem by approximated an ideal system. Do better in the 
future than the best that can be done now.  Example:  rather than widening a road to reduce traffic, the city 
government installs bike paths. 
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The Ineffectiveness of Mathematics 
In 1956 mathematician Eugene Wigner, Princeton University, wrote a paper titled: “The Unreasonable 
Effectiveness of Mathematics in the Natural Sciences”.  Wigner’s position was that the fact that 
mathematics can describe the universe so well in particular physical laws, is a gift that we neither 
understand nor deserve.   
 
Particle physicists will say that particles are discovered mathematically.  When a noteworthy particle 
physicists was asked, "How does this work? Is math a truth of nature or a way human's perceived 
nature?"  His reply, “Fascinating puzzle, don’t know the answer”. 
 
Not everyone agrees with Wigner’s position. The famous mathematician Stephan Wolfram comments: “I 
think it is an illusion.  What’s happening is that people have chosen to build physics, for example, using 
the mathematics that has been practiced, and has been developed historically.  They’re looking at 
everything, they’re choosing to study things which are amendable to study using the mathematics that 
happen to arisen. But actually, there’s a whole vast ocean of other things that are really quite inaccessible 
to these methods.” 
 
Other responses have been that Wigner’s idea that mathematics is a “miracle” is to suggest that the 
effectiveness is overstated.  For example, the analytical equations that once described the physical 
properties of transistor behavior is no longer valid given the deep sub-micrometer dimensions of today’s 
designs.  The physics is just swamped with too many complicated higher order effects that can no longer 
be neglected at the small scale.  Empirical models are now used in today’s computer simulation software  
for circuit design. Traditional analytical mathematics simply fails to describe the system in compact form. 
 
Another example is the use of Maxwell’s equations for modeling integrated electromagnetic devices (ie, 
cell phones) and structures.  In modern devices, due to the complexity of design, it is no longer effective 
to use analytical calculations. The standard approach today is the use of electromagnetic simulations 
programs that use numerical methods. The upshot is that when analytical methods become too complex, 
the pragmatic solution is to use empirical models and simulations. 
 

IV – SUMMING UP 
CH 13 – MATHEMATICS:  ITS NATURE & PURPOSE 
Society has always decreed that those who undertake education should have a substantial input of 
mathematics. 
 
Teachers accept its importance, yet many of those who teach the subject would struggle to give a 
convincing rationale for what they teach.  When the pupils ask, ‘What use is this?’ the answers provided 
are not always compelling.  Yet our educational institutions state, always implicitly, and often explicitly, 
that the subjects that really matter are mathematics and our English language. 
 
Convincing rationale example:  mathematical modeling to predict electrical energy savings from Energy 
Conservation Opportunities (ECOs). Reduce carbon footprint (CH7, pg. 18). 

 
A story by the British playwright and novelist, W. Somerset Maugham:  A churchwarden 
is sacked by a new vicar because he cannot read.  The churchwarden had some 
savings, invested then in a shop, gradually built a chain of shops and became wealthy.  
On learning that he cannot read, the bank manager asks where he might have reached 
had he been able to.  The man replies that he would be earning a pittance as a 
churchwarden.  Moral:  while he was not literate, he may well have been numerate. 
 

We are all wonderfully flexible in the face of many sorts of disability, yet there are some mathematical 
needs that it is very difficult to do without.  They are fewer than we might believe: to tell the time, 
monetary calculations and daily routines that involve sorting processes. 
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Direct Applications of Mathematics 
1) Applied mathematics (Newton creating the calculus; part of the natural sciences). 
2) Operational Research (matters involving process and how things are done; part of the social sciences). 
3) Statistics 
4) Topology 
5) Graph Theory 
 
Mathematics as a Language and a Tool 
“Mathematics is the gate and key of sciences”.   Roger Bacon 
 
A physicist nowadays cannot pursue his or her studies without extensive mathematical equipment.  The 
concepts needed to understand relationships in both the hard physical world of concrete objects, and the 
web of forces and fields that seem to predict and explain what happens, are all expressed in terms of 
mathematical symbols and equations.  The math has gone so far that there is an uneasy feeling that the 
mathematical symbols are the entities which physics discusses (since physics has become highly 
dependent upon mathematics). 

Baconian Example:  the mathematics of simple harmonic 
motion in both mechanics (eg, springs & weights) and 
electricity (charge flow Q in electrical circuits with 
capacitive and inductive components – the fundamental 
oscillators used in analog radios). 
 
 

 

Conjecture: the nexus of mankind’s intellectual progress will be 
between mind, language and mathematics. 
 
 

 
 

 
Mathematics can be seen as a tool or a means of communication. 
(A) = Mathematics applied to the world. 
(T) = Mathematics used as a tool in other disciplines. 
 
Mathematics for its Own Sake 
Like linguistics, mathematics is capable of being highly narcissistic.  Both are capable to work entirely 
inside their realm, oblivious of the outside world and make great discoveries within their boundaries.  
Once a ‘language’ has been created it is possible to work within it, not necessarily even being concerned 
with meaning. 
 
Some creative mathematicians have been motivated by a desire to solve problems deriving from the real 
world; others have no interest in it – the mathematics itself suffices.  A very pure mathematician would be 
content to say: 

“Consider a set of elements a, b, c … and two operations * and /.  They conform to the following 
rules…” 
 

If you ask what these elements a, b, c… are, he will reply, ‘they are defined by the connections enshrined 
in the rules’.  If you say, ‘What exactly are the operations?  He will reply, ‘The rules indicate what the 
operation are in terms of the elements.’  In other words, elements and operations define each other by the 
rules governing them.  The system is totally self-referential.  It seems we may be in a ‘black hole’. 
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Not quite true.  The Greek’s conic sections (CH5) and Grasseman’s algebras were developed as a pure 
mathematical exercise and later found uses in the real world, thereby escaping from within mathematics. 
 
Mathematics for Personal Development 
Thinking is a process, not an appreciation of structure.  Modern linguistic approaches to language do see 
it as a process as well as a structure.  A mathematical example of a process is illustrated in Euclid’s proof 
that the number of primes is infinite.  If they stop, then consequence was that there was a higher prime 
and we got into a contradiction.  Hence, they went on forever. 
 
The processes of mathematics and of logic are the processes of the mind.  In learning mathematics, we 
are matching our minds with the external manifestation of minds more powerful than our own.  It is not 
 exactly that mathematics trains the mind.  Its processes are those of the mind.  In the words of Lord 
Kelvin, “Do not imagine that mathematics is hard and crabbed and repulsive to common sense.  It is 
merely the etherealization of common sense.” 
 
Caution:  In justifying mathematics, overkill is easy, since no one is resisting.    
 
Some Central Uncertainties 
There are two dominate views of mathematics: 
 1) Platonic – see mathematics as external and to be discovered. 
 2) Formalist – regards mathematics as some form of game of chess with elements with relationships 
between them but no dependence the outside world. 
 
The Platonic view saw geometry as the central truth, and it was not only true, but it also matched the 
space of the real world. That view was destroyed by the development of non-Euclidean geometries and 
the fact that some seemed to fit the world better than Euclid.  This did not mean that it lacked an 
existence and a truth of a God-given sort, but the point-of-view simply became more abstract. 
 
The formalist view (non-Platonic) will not accommodate the notion that intelligence cannot fail to develop  
number.  We are not going to resolve these deep issues at the end of our last chapter but can state a 
position.  Mathematics does have the objective nature, but that does not mean it depends in any way on 
the external world, nor does its testing reside there.  That is internal.  We have returned yet again to 
Einstein’s question: “How can it be that mathematics, a creation of the human mind independent of 
existence, should be so adapted to the objects of reality?” 
 
The Barber Paradox 

In “Principia Mathematica” (1910) Alfred North Whitehead and Bertrand Russell establish that 1 + 1 
= 2 (in 52 steps).  In the analysis of sets, Russell became unsure of his notion of a set and devised 
statements with internal self-contradictions.  A classic example is the “Barber Paradox”:  the barber 
is the "one who shaves all those, and those only, who do not shave themselves."  The question is, 
does the barber shave himself? 

 
Answering this question results in a contradiction. The barber cannot shave himself as he only shaves 
those who do not shave themselves. If he shaves himself, he ceases to be a barber. If the barber does 
not shave himself then he fits into the group (a set) of people who would be shaved by the barber (and, 
so, as the barber he needs to shave himself). 

 
One way to get out of the paradox (logical ‘jail’) is to see that the Barber paradox is not 
really a paradox in the true sense of the word. A man who shaves exactly those men 
who do not shave themselves simply cannot exist, and there are no reasons to expect 
the opposite. This invalidates Russell’s initial position:  that the set of all sets do not 
contain themselves (avoids circular logic). 
 

A final blow to certainties was struck by Kurt Gödel in 1931 with the publications of his incompleteness 
theorem on mathematical logic which basically shows that it is impossible to find a complete and 
consistent set of axioms for all mathematics (a la Hilbert’s program).  



39 
 

Since Euclid mathematics had been concerned with axiomatic systems.  One started with certain 
assumptions and built from there.  For Euclid, there were ‘self-evident truths’ external to oneself. Whether 
a Platonist and a Formalist, in either view it was expected that you could build a structure such that if 
there were a proposition it could be proved or disproved.   
 
Gödel proved that in an axiomatic system there would be propositions that were ‘formally undecidable’.  
The proof is profound and perhaps one of the most shattering statements ever made in philosophy.  Even  
 
in relatively narrow areas of knowledge where the starting points and the rules of the game are clear. 
there will be statements whose truth or falsity (within the system) cannot be established.  In other words, 
there are statements that cannot be proved or disproved.  For fun, Google Gödel’s statement, “True, but 
not provable”. 
 
“Maturity is the capacity to endure uncertainties” – John Huston Finley 
The hope of most people is to have something to cling on to.  Faith can remain, but it would be more 
sense if we had a basis in reason.  The answer has to be in accepting what is and not longing for what we 
hoped might or ought to be.  There are central uncertainties, yet it is possible to live with them, and still 
enjoy life and mathematics. 
 
In Closing 

In closing the last chapter of this review of mathematics, it cannot be hoped 
that we now know what mathematics is, but we must be content that we 
perhaps know more about it.  We end with a list of quotations from Morris 
Kline’s “Mathematics in Western Culture”.   
 
If, at the end, it is Huck Finn’s view that most commends itself to you…so be it. 
 

“In every department of physical science there is only so much science, properly so-called, as there is 
mathematics.”  – Emanual Kant 
 
“Maths is the gate and the key of sciences…Neglect of mathematics works injury to all knowledge, since 
he who is ignorant of it cannot view the other sciences or the things of this world.  And what is worse, 
men who are thus ignorant are unable to perceive their own ignorance and so do not seek a remedy.” – 
Roger Bacon 
 
“Do not imagine that mathematics is hard and crabbed and repulsive to common sense. It is merely the 
etherealization of common sense.” – Kelvin 
 
“Music is the pleasure the human soul experiences from counting without being aware that it is counting.” 
– Gottfried Wilhelm Leibniz 
 
“The science of Pure Maths, in its modern developments, may claim to be the most original creation of the 
human spirit.” – A. N. Whitehead 
 
“Geometry will show the soul towards truth and create the spirit of philosophy.” – Plato 
 
“Mighty is geometry; joined with art, resistless.” – Euripides 
 
“But where our senses fail us reason must step in.” – Galileo 
 
“I have never been able fully to understand why some combinations of tones are more pleasing than 
others, or why certain combinations not only fail to please but are even highly offensive.” – Galileo 
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“For many parts of nature can neither be invented with sufficient subtlety, nor demonstrated with sufficient 
perspicuity nor accommodated into use with sufficient dexterity without the aid and intervention of 
mathematics.” – Francis Bacon 
 
“How can it be that mathematics, a product of human thought independent of experience, is so admirably 
adapted to the objects of reality?” – Albert Einstein 
 
“I had been to school…and could say the multiplication table up to 6 x 7 = 35 and I don’t reckon I could 
ever get any further than that if I was to live forever.  I don’t take no stock in mathematics, anyway.” – 
Huck Finn 
 
“Besides the mathematical arts there is no infallible knowledge, except that it be borrowed from them.” – 
Robert Recorde 
 
“Nor should it be considered rash not to be satisfied with those opinions which have become common.  
No one should be scorned in physical disputes for not holding to the opinions which happen to please 
other people best.” – Galileo 
 
“In order to seek truth it is necessary one in the course of our life to doubt as far as possible all things.” – 
Descartes 
 
“All the pictures which science now draw of nature and which alone seem capable of according with 
observational fact are mathematical pictures.” – James Jeans 
 
“People who don’t count won’t count.” – Anatole France 
 
“Thus mathematics may be defined as the subject in which we never know what we are talking about, nor 
whether what we are saying is true.” – Bertrand Russell 
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